
軸承是精密機(jī)械零件,對滾動體和軸承套圈的圓度、波紋度和表面粗糙度有很高的要求,生產(chǎn)過程必須滿足亞微米級公差。為了驗證生產(chǎn)質(zhì)量,采用了最先進(jìn)的接觸測量技術(shù),對如圓度和波紋度進(jìn)行測量以及根據(jù)ISO 4287標(biāo)準(zhǔn)對表面粗糙度進(jìn)行測量。為了測量圓度和波紋度,使用了特殊的測量儀,同時也可用來測量表面粗糙度。測量主要是在實驗室環(huán)境中以隨機(jī)抽樣的方式檢查零件。同時,為了滿足日益增長的軸承質(zhì)量要求,必須增大樣本尺寸,但這增加了質(zhì)量檢查所需的時間。散射光光學(xué)測量技術(shù)有助于解決這些矛盾的要求。這項技術(shù)基于光從表面的反射,可在一次操作中測量圓度、波紋度和表面粗糙度。提供潔凈的環(huán)境,就可使用散射光進(jìn)行自動測量,并將其集成于如超精和磨削等生產(chǎn)過程中。此外,周期時間遠(yuǎn)比接觸測量短。散射光測量的結(jié)果可校準(zhǔn)。通過校準(zhǔn)圓度和波紋度可達(dá)到國際標(biāo)準(zhǔn)。Aq是從表面粗糙度的光學(xué)結(jié)果得來的新參數(shù),雖然其與已知的Ra和Rz值無關(guān),但與偶爾使用的Rdq值有關(guān)。
散射光技術(shù)的基本原理
散射光技術(shù)是一種檢測表面微觀形貌的新方法,其由VDA 2009定義。本標(biāo)準(zhǔn)描述了散射光角分辨率的測量方法,該法特別適用于摩擦因數(shù)要求非常低的光滑表面,其基于光散射定律和鏡面模型。入射光以粗糙表面的微觀形貌角φ反射。通過Fourier光學(xué),反射光在聚焦平面上傳輸。探測器記錄散射角的強(qiáng)度分布,也就等同記錄了頻率分布。
在計算表面粗糙度輪廓的梯度分布時,必須使用λs低通濾波器。此外,還必須考慮測量儀器的橫向分辨率。
滾動軸承行業(yè)通常在一種理想條件下,在精密測量室里用形貌儀測量形狀和波紋度。這種測量在生產(chǎn)環(huán)境的應(yīng)用是不可取的,因為環(huán)境振動會使測量結(jié)果失真。這些畸變的測量極易導(dǎo)致代價昂貴的誤讀。
散射光技術(shù)在軸承工業(yè)中的應(yīng)用
軸承套圈的100%測量,軸承生產(chǎn)中的質(zhì)量保證需要精密測量,目的是在大批量和短周期生產(chǎn)時滿足最嚴(yán)格的公差。由于實驗室測量費用高,例如到實驗室的步行距離長且測量周期長,傳統(tǒng)的測量方法只能通過測量樣品來監(jiān)測過程,生產(chǎn)過程中的隨機(jī)誤差極易被忽略。因此,100%在線過程監(jiān)測將成為主要優(yōu)勢。如果這些誤差位于滾動零件的接觸區(qū)域,則軸承在將來的運行中極有可能產(chǎn)生噪聲。在隨機(jī)抽樣檢驗中,這些誤差僅能被偶然發(fā)現(xiàn)。
汽車工業(yè)對滾動軸承的質(zhì)量要求越來越高。表面粗糙度和波紋度公差精確到亞微米。幅值分布和角度分布的統(tǒng)計值能很好地描述表面粗糙度。然而,在形狀輪廓的Fourier分析的幅值譜中可發(fā)現(xiàn)產(chǎn)生的波紋。散射光提供了一種可追蹤的測量技術(shù),可計算表面粗糙度的參數(shù)Aq。散射光可區(qū)分超精和磨削等不同的加工過程。同時,利用形狀輪廓的積分可確定形狀輪廓的宏觀梯度。這項技術(shù)穩(wěn)健、快速、非接觸,可用于在生產(chǎn)場地進(jìn)行加工過程的100%監(jiān)測。